NERSC REQUIREMENTS FOR ENABLING CS RESEARCH IN EXASCALE DATA ANALYTICS

Nagiza F. Samatova

samatovan@ornl.gov

Oak Ridge National Laboratory North Carolina State University

ACKNOWLEDGEMENTS

- DOE ASCR for funding CS research in exascale data analytics
- Arie Shoshani, Alok Choudhary, Rob Ross, etc
 - PI's and co-PI's on the projects
- LCF Facilities at ORNL
- Application Scientists:
 - CS Chang, ORNL
 - Stephane, PPPL
 - Fred Semazzi, NCSU
 - Many others

HARDWARE FOR DATA ANALYTICS IS A FOSTER CHILD

HW configuration for DA is an after-thought:

- Has been traditionally optimized for running simulations
- Whatever is left over is what data analyst should live with
- DA-driven HW must become the first class citizen on the agenda if we are serious about the exascale

Infrastructure depends on the DA modality:

- In situ?
- Distributed or streamline fashion?
- Local or global context analysis?
- Shared among a group of collaborators?
- Linked to experimental and/or other data archives?

DISTINCT DATA ACCESS PATTERNS

In contrast to simulations, Data Analytics requires a different mix of memory, disk storage, & communication trade-offs.

Ex: Scientific Data Flow in Structure Modeling

Each step is a combinatorial optimization problem with different data access patterns.

Pipeline: Ab Initio Prediction of Protein 3-d Structure

National Laboratory

Ex: Scientific Data Flow in MS Proteomics

Twice a month production runs

Archive Data (~2TB) (grows exponentially):

- -- 100MB files
- -- 100-1000s scans in each file

SEQUEST

14-24 hours per file
One scan access at a time

Results (~2TB)

DOMAIN-SPECIFIC REALIZATION OF THE SW STACK

END-TO-END DATA ANALYTICS SOFTWARE STACK IS COMPLEX: GENERIC (ALL APPLICATIONS) PERSPECTIVE

Focus of my talk

THE LESSON LEARNED FROM LINEAR ALGEBRA

SOFTWARE FOR DATA ANALYTICS IS MORE AD HOC

- Should we adopt this approach from Linear Algebra to Data Analytics at extreme scale? If so, then
 - What are the "Dwarfs" for data analytics?
 - What about the "Preconditioners?"
 - What are the "Computational kernels?"
- Do we/should we have a ScaLAPACK-like library for Exascale Data Analytics?
- What NERSC should/could offer for enabling this activity?

"COMPUTATIONAL KERNELS" CONCEPT IS PROMISING

The frequency of kernel operations in illustrative data mining algorithms and applications.

Application		C 0/			
Application	Kernel 1 (%)	Kernel 2 (%)	Kernel 3 (%)	Sum %	
K-means	Distance (68)	Center (21)	minDist (10)	99	
Fuzzy K-means	Center (58)	Distance (39)	fuzzySum (1)	98	
BIRCH	Distance (54)	Variance (22)	redist.(10)	86	
HOP	Density (39)	Search (30)	Gather (23)	92	
Naïve Bayesian	probCal (49)	Variance (38)	dataRead (10)	97	
ScalParC	Classify (37)	giniCalc (36)	Compare (24)	97	
Apriori	Subset (58)	dataRead (14)	Increment (8)	80	
Eclat	Intersect (39)	addClass (23)	invertC (10)	72	
SVMlight	quotMatrix(57)	quadGrad (38)	quotUpdate(2)	97	

Alok Choudhary, NWU, NU-Minebench

WHAT ABOUT "PRECONDITIONERS" FOR DATA ANALYTICS?

How to define a "preconditioner" for data analytics? Solve a Problem P_{hard}

Directly Indirectly (via "Preconditioner"): Reduce a Hard Problem P_{hard} to a "Better" Problem P_{better}

$$P_{hard} \rightarrow Preconditioner \rightarrow P_{better}$$

"Better" in terms of:

- Increased throughput
- Faster time-to-solution
- More accurate solution
- Higher data compression rate
- Approximate but real-time solution

IF WE ARE LUCKY...

- and Jack Dongara did most of the work for us:
 - Some data analysis routines call linear algebra functions
 - In R, they are built on top of LAPACK library
- RScaLAPACK is an R wrapper library to ScaLAPACK

A = matrix(rnorm(256),16,16)b = as.vector(rnorm(16))

Using RScaLAPACK: Using R:

library (RScaLAPACK)
sla.solve (A,b)
sla.svd (A)
sla.prcomp (A)
sla.prcomp (A)
sla.prcomp (A)
sla.prcomp (A)

WHAT IF WE ARE NOT THAT LUCKY?

IN SITU PRECONDITIONERS FOR SCIENTIFIC DATA COMPRESSION

Myth: "Scientific data is almost uncompressible."

GTS Fusion Simulation Data (Stephane, PPPL)

- ~2TB per C&R
- Every 1 hour
- Two copies
- Keep the last copy

Analysis Data

- ~2TB per run (now)
- Every 10th time step
- Cannot afford storing all b/s of
- Analysis routines and I/O reads
- Matlab analysis routines

V&V Data

- Small
- Every 2nd time step

Expected: 10-fold increase by 2012-2014

Computing and Storage Resources

	GY	RO	G	TS	XG	C1*
Facilities	NERSC/O	LCF	NERSC/OLCF		NERSC/OLCF	
Architectures	XT5,Powe	r,Cluster	XT5		XT5	
Years	Present	In 5 yrs	Present	In 5 yrs	Present	In 5 yrs
Hrs used/year	30M	50M	24M	50M	65M	500M
NERSC'09 used	1.2Mhrs		~2Mhrs		~8M hrs	
#Cores per run	512	512	8-98K	32-130K	10-223K	1M
Wall clock/run	12	24	72 Hrs	72 Hrs	20-100hrs	20-100hrs
Memory/run	512GB	1.024TB	16-100T	32-160TB	40 TB	100 TB
Min Memory/core	1GB	2GB	1GB	1GB	0.3GB	0.1GB
Read/Write data			2.5TB	8TB	5TB	25TB
Checkpoint size	4GB	8GB	1-8GB	1-10 GB	1TB	5TB
Data in/out nersc			5GB/run	10GB/run	10GB/day	50GB/day
On-line storage			4TB/10K	8TB/10K	4TB/3K	5TB/3K
Off-line storage			25GB	100GB	1TB/30	10TB/100

FROM C.S. CHANG'S TALK AT NERSC

*Unstructured mesh

S-PRECONDITIONER FOR ANALYSIS DATA COMPRESSION

Analysis data is stored every N-th time step:

- Lossy data reduction
- Data is almost random—hard/impossible to compress; <10% lossless
- N is defined ad hoc (N=10 for GTS, N=100 for Supernova)

Stephane, PPPL: "With this data quality and data reduction rate, I can test many more hypothesis using my analysis tools."

While Compression Ratio is growing up from 87.06% to 87.44%, the Pearson Correlation dropped from 0.994 to 0.937.

BFA-PRECONDITIONER FOR C&R DATA COMPRESSION

C&R Data Compression:

- Must be lossless
- Must be fast

Impact of BFA-preconditioner:

- 8x throughput increase for bzip
- 4x throughput increase for gzip
- 1.41 compression ratio (CR) for zpaq with BFA-precond
- 1.33 vs. 1.17 CR for bzip2 with vs. w/o BFA-precond.
- 1.32 vs. 1.19 CR for zlib with vs. w/o BFA-precond.

BC-PRECONDITIONER FOR UNDERDETRMINED CLASSIFICATION PROBLEM (BENCH)

National Laboratory

- Accuracy increase by 13%-16%
- Across different classifiers
- On data with <100 samples >d=4,000-7,000 dimensions—underdetermined problems
- When applied to seasonal hurricane prediction (d>35K), correlation with observed improved from 0.64 to 0.92-0.96

Classifier	Single classifier	BENCH ensemble
BBN	82.856	97.142
Decision Tree	82.856	95.714
SVM	91.426	97.142

SE-PRECONDITIONER FOR CONTRASTING FREQUENT SUBGRAPH MINING (NIBBS-SEARCH)

Exact Algorithm versus NIBBS-Search

(98 Genome-Scale Metabolic Networks, 49 Positive, 49 Negative)

Runtime of exact algorithm grows exponentially (unable to complete run)

The NIBBS-Search algorithm completes in a matter of seconds

19

Empirical tests show that the NIBBS-Search subgraphs are significantly close approximations of maximally-biased subgraphs

NC STATE UNIVERSITY
Department of Computer Science

DARK FERMENTATIVE BIO-HYDROGEN PRODUCTION PATHWAYS ARE IDENTIFIED WITH NIBBS-SEARCH

EC Number	Enzyme Name	T-Test	NIBS	Mutual Information		
Acetate Pathway						
2.7.2.1	acetate kinase;		TRUE			
2.3.1.8	phosphotransacetylase	TRUE	TRUE			
4.2.1.55	crotonase	TRUE	TRUE			
2.3.1.54	pyruvate formate lyase		TRUE			
Butyrate Pathway						
1.3.99.2	butyryl-CoA dehydrogenase;		TRUE			
2.7.2.7	butyrate kinase	TRUE	TRUE			
1.1.1.157	3-hydroxybutyryl-CoA dehydrogenase;		TRUE			
2.3.1.19	phosphate butyryltransferase;	TRUE	TRUE			
2.3.1.9	acetyl-CoA C-acetyltransferase;		TRUE			
2.3.1.54	pyruvate formate lyase		TRUE			
4.2.1.55	crotonase	TRUE	TRUE			
Formate Pathway						
1.12.1.2	formate dehydrogenase	TRUE	TRUE			
1.2.7.1	pyruvate ferredoxin oxidoreductase		TRUE			
1.12.7.2	ferrodoxin hydrogenase					

CS DATA ANALYSIS RESEARCH "WORKFLOW"— ITERATIVE PROCESS W/ SIGNIFICANT RESOURCE NEEDS

